PART I
Monitoring Cape Cod Bay
by Amy Costa, Ph.D.
Director, Cape Cod Bay Monitoring Program

Water Quality
In 2006, the Cape Cod Bay Monitoring Program was established by the Provincetown Center for Coastal Studies (PCCS) as a long-term study to investigate the health of the Bay from an ecosystem perspective. Cape Cod Bay, like other coastal ecosystems, is at risk to succumbing to the adverse effects of the increasing demands of a growing population. Cape Cod is one of the regions of the highest rate of population increase. In the early 1950s, the population of Barnstable County was less than 50,000. Today, the number of residents has more than quadrupled to greater than 220,000 (US Census Bureau). With this population growth comes dramatic changes in land use and land cover with commercial and residential developments replacing what were once forested areas and other natural habitats (WHRC).

Impacts on the Bay related to population growth are thus both direct and indirect. Direct effects include increased sewage (i.e. point source pollution) and are relatively easy to monitor. The impacts of indirect effects are much more difficult to detect and/or measure. For example, associated with increased commercial and residential development are larger areas of impervious surfaces (e.g. paved roads, parking lots, and driveways; buildings; tanks; recreational courts). Impervious surfaces are one of the primary sources of non-point source pollution. When rain water or snow melt washes over these surfaces, pollutants (e.g. heavy metals, gas, oil, pet waste, fertilizers) are picked up, accumulated, and carried to storm drains, rivers, streams, and wetlands, ultimately to be deposited in the Bay. On Cape Cod, these non-point source pollutants are thought to be the leading cause of water quality degradation (USEPA, WHRC).

Therefore, as more and more people come to Cape Cod, whether to visit or to reside, it is critical that we preserve that which attracts these people – the beauty of the surrounding waters, the diversity of marine life - and protect these waters from the degradation prevalent in so many other coastal ecosystems. With this as the ultimate goal of the Cape Cod Monitoring Program, the following objectives were established:

- Provide baseline water quality data for Cape Cod Bay
- Map the distribution of nutrients both nearshore and offshore
- Identify sources of pollution (nitrogen, phosphate)
- Trace spatial (horizontal, vertical) and temporal (tidal, seasonal, interannual) changes in water properties and nutrient concentrations
- Develop a set of parameters that can serve as indicators of the health of the Cape Cod Bay ecosystem.

Monitoring Variables
The variables chosen in the first year of this study to address the water quality of Cape Cod Bay include the following chemical and physical parameters as recommended by other water quality monitoring studies (e.g. Coalition for Buzzards Bay, URI Watershed Watch, EPA).

Physical Measures
Water temperature and salinity are two of the most important physical properties of the marine environment, influencing many physical (density), chemical (capacity to hold D.O., sensitivity to toxic wastes), and biological processes (metabolic processes, photosynthesis) as well as dictating the types, distribution and abundance of marine flora and fauna. Monitoring levels of these properties, and more importantly, changes in the levels, provides a direct indication of potential problems.

Turbidity, a measure of water clarity or how much the material suspended in the water column decreases light penetration, is also measured as an indicator of the quality of the water in the Bay. High levels of turbidity can result from anthropogenic disturbances such as urban runoff, waste discharge, dredging, and boating, as well as natural disturbances such as storms, wave action, and bottom feeding animals. Highly turbid waters are detrimental to the entire ecosystem from sediment quality, to water chemistry, to the survival of plants and animals. Some of the associated negative impacts of high levels of turbidity include lowering the rates of photosynthesis, smothering benthic organisms, and altering bottom material and sediment size.
Chemical Parameters

Excessive nutrient input is behind most major problems affecting coastal ecosystems, (e.g., eutrophication, algal blooms, hypoxia). It is therefore important that baseline data for the Bay is established and both small and large-scale nutrient fluxes (spatial and temporal) are closely monitored. The nutrients of interest to this project are nitrogen and phosphorous. During the first year of data collection, water samples were analyzed for dissolved inorganic forms of nitrogen (NOx) and phosphorous (PO4). These represent the bio-available forms of N and P or those forms immediately available to organisms for growth. During 2007 samples will also be analyzed for levels of total nitrogen, total phosphorous, and ammonia.

Other associated chemical water quality parameters that were monitored included dissolved oxygen (D.O.) and pH. D.O. concentrations are a measure of how well the water is aerated. This parameter is one of the best and most immediate indicators of a system’s health. Because oxygen is needed to support animal and plant life, consequences of declining D.O. levels will set in quickly. This immediate impact on plant and animal life makes measuring the level of oxygen an important means of assessing water quality. Additionally, at low oxygen conditions, nutrients (and other pollutants) will be released from sediments thereby exacerbating problems. pH levels are also critical to survival of most marine plants and animals. They can be influenced by events such as algal blooms and acidic pollution from wastewater discharge and in this way function as preliminary indicators of potential problems. At low pH levels, toxic metals in sediments can be re-suspended in the water column. Therefore, it is important to monitor pH levels in areas of concern (e.g. dredge spoil, harbors, marinas).

For the 2007 field season, the measurement of chlorophyll a in surface samples was added to the sampling regime. Chlorophyll a is the green photosynthetic pigment in most phytoplankton and plant cells. Because of the direct relation between chlorophyll a and algal concentration, measuring chlorophyll a will give an accurate estimation of the amount of organic matter produced.

Taken as a whole, this set of measurements provides a picture of the condition of the Bay ecosystem by functioning as an early warning system (temperature, salinity, pH), tracing the changes in levels of contaminants (nutrients, turbidity), and predicting the status of the plant and animal life (dissolved oxygen, chlorophyll a).
Table 1. Levels for each water quality parameter used to estimate health indices for each station.

<table>
<thead>
<tr>
<th>Health Index</th>
<th>Temperature (°C)</th>
<th>Dissolved Oxygen (mg/L)</th>
<th>Turbidity / Secchi Depth (m)</th>
<th>Nitrate/Nitrite (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td><18</td>
<td>>8</td>
<td>>5</td>
<td><1</td>
</tr>
<tr>
<td>Fair</td>
<td>18-21</td>
<td>6-8</td>
<td>3-5</td>
<td>1-5</td>
</tr>
<tr>
<td>Poor</td>
<td>>21</td>
<td><6</td>
<td><3</td>
<td>>5</td>
</tr>
</tbody>
</table>

No data were collected from stations from Provincetown to Pamet during the spring. No volunteers sampled during spring. Most of the stations that were sampled during the spring fell into the Good category (Figure 2). The stations surrounding Plymouth Harbor were scored Fair as a result of their poor water clarity and slightly higher levels of nitrate/nitrite.

Conditions deteriorated considerably during the summer at stations located along the shoreline of Cape Cod (Figure 3). Only one station located outside Sesuit Harbor, was rated Good. Most stations were adversely affected by more than one parameter. Of the eight offshore stations, all but the most southwestern one, 9S, were considered Good. 9S received a Fair rating as a result of its warmer temperature and lower water clarity.

Although not as good as conditions during the spring, for most stations, water quality improved during the fall (Figure 4). Only Jones River and the inshore stations at Old Harbor and Scorton Creek remained Poor as a result of high levels of nitrate/nitrite.
Summary
With the completed analyses of only one field season of data, only very tenuous assumptions can be made about the health of Cape Cod Bay. The data from this first season suggest that during much of the year, the Bay is relatively healthy. During the summer months, however, coincident with the population explosion, water quality conditions begin to deteriorate. Dissolved oxygen levels decline. Nitrate/nitrite concentrations increase dramatically, especially in surface waters during ebb tide. Ortho-phosphate concentrations increase. Water clarity declines. These trends are especially evident at nearshore and inshore stations. Both the spatial and temporal variability in the water quality data therefore suggest that the anthropogenic influences are negatively impacting Cape Cod Bay. A preliminary analysis of the 2007 data collected to date show similar patterns in peaks in nutrient concentrations and declines in dissolved oxygen levels and water clarity during the summer months.

It is imperative, therefore, that over the coming years, as impacts of population growth continue to manifest themselves on Cape Cod, that the waters of the Bay are closely monitored. It is only through careful documentation and analyses of trends in water quality data that the health of the Bay can be understood. It is only after we understand this dynamic and fragile system that we can take suitable steps to protect it.

Citizen Scientists
Since the onset of the program, volunteers have been a critical component to the collection of water quality data along the Cape Cod Bay shoreline. Volunteer Citizen Scientists sample sites from Provincetown to Plymouth once a week, May - October, during mid-ebb tide. These sites are located further inshore in areas inaccessible by boat. Data on temperature, salinity, turbidity, dissolved oxygen, pH, and nutrients are collected. The involvement of the volunteers and the amount of data contributed by them has benefited the program immensely. We hope to expand the network of volunteers and the number of sites each year.

<table>
<thead>
<tr>
<th>Citizen Scientist</th>
<th>Site</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aimee Teaby</td>
<td>Provincetown Harbor</td>
<td>Jun-Sept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herring River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karen Kramer</td>
<td>Pamet</td>
<td>Jun-Jul</td>
<td></td>
</tr>
<tr>
<td>Nina Kaars</td>
<td>Herring River</td>
<td>May-Oct</td>
<td></td>
</tr>
<tr>
<td>Phil and Betty Suraci</td>
<td>Boat Meadow</td>
<td>May-Oct</td>
<td></td>
</tr>
<tr>
<td>Joann Figueras</td>
<td>Little Namskaket</td>
<td>Jun-Oct</td>
<td>May-Oct</td>
</tr>
<tr>
<td>Scott and Heather Grenon</td>
<td>Upper Namskaket</td>
<td>May-Aug</td>
<td></td>
</tr>
<tr>
<td>Val Magor</td>
<td>Namskaket</td>
<td>Jun-Oct</td>
<td>May-Aug</td>
</tr>
<tr>
<td>Keith Harrison</td>
<td>Cole Road Beach</td>
<td>May-Oct</td>
<td></td>
</tr>
<tr>
<td>Bill Edwards</td>
<td>Paines Creek</td>
<td>Jun-Nov</td>
<td>May-Nov</td>
</tr>
<tr>
<td>Theresa Barbo</td>
<td>Grays Beach</td>
<td>Jun-Nov</td>
<td></td>
</tr>
<tr>
<td>Diana Stimson</td>
<td>Scorton Creek</td>
<td>Jun-Dec</td>
<td>Jun-Dec</td>
</tr>
<tr>
<td></td>
<td>Old Harbor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regina Asmutis-Silvia</td>
<td>Ellisdville Harbor</td>
<td>Jun-Sept</td>
<td>Jun-Sept</td>
</tr>
<tr>
<td></td>
<td>Plymouth Harbor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol “Kril” Carson</td>
<td>Jones River</td>
<td>Jun-Nov</td>
<td>May-Nov</td>
</tr>
</tbody>
</table>

Eelgrass
Eelgrass ecosystems are a vital part of coastal embayments such as Cape Cod Bay. They are highly productive systems and extremely important biologically. They act as a refuge and nursery for juvenile fish and shellfish, many of which are commercially important species in this region. The individual eelgrass blades function as an important...
substrate, being colonized by a diverse community of epiphytic flora and fauna. Because of these attributes, eelgrass beds typically support a higher diversity and abundance of marine life compared to surrounding unvegetated areas. Eelgrass systems are equally important from a purely physical perspective in that they help to prevent erosion by stabilizing sediments with their extensive root systems as well as aid in filtering contaminants from the water column.

Despite the obvious value of eelgrass ecosystems, eelgrass beds are threatened by a number of anthropogenic perturbations. Declines in seagrass populations have been linked to physical disturbances (i.e., dredging, construction, shellfishing, propeller damage from boating), turbidity (i.e. topsoil runoff, activities that resuspend sediments), pollution, and most notably, eutrophication as a result of nutrient loading.

Eelgrass is often used as an in situ indicator of the condition of the entire ecosystem because it responds noticeably to any degradation in water quality, typically by declining in range or abundance. Therefore, because of this close association between eelgrass and water quality, monitoring the eelgrass habitat of Cape Cod along with water quality will give us a better understanding of the dynamics of this system.

Specific objectives include of our research include:

- Describe the flora and fauna indigenous to the eelgrass ecosystem of Cape Cod Bay
- Measure the productivity of the eelgrass population of Cape Cod Bay
- Map current eelgrass beds in Cape Cod Bay on a finer scale
- Set up a long-term program to monitor the effects of anthropogenic and natural disturbances on the abundance and distribution of eelgrass within Cape Cod Bay

During the 2006 field season, boat-based surveys were used to investigate eelgrass beds off of Jeremy Point, Billingsgate Island, and Plymouth. In 2007, through a collaboration with LightHawk, 2 aerial surveys have been flown to photo-document the eelgrass beds of the entire Bay. Preliminary analyses of these photographs have shown areas that appear to be healthy and flourishing as well as areas that are exposed to recurrent physical destruction from commercial fishing practices.

Ultimately, the data collected from both boat and aerial surveys will enable us to characterize the present status of the major eelgrass beds in Cape Cod Bay and give tangible evidence of the ecological importance of this ecosystem in terms of productivity, habitat, refuge, and feeding ground. With the results of this study, we will be able to more fully interpret the influences of urbanization on the Bay and the degree to which they penetrate into the surrounding eelgrass beds. Once the relative importance of this environment is established and the threats are quantified, we will have a basis for managing for the protection of this resource. Additionally, with data on water quality (nutrient concentrations, light penetration), sediment type, and historical distribution of eelgrass, we will be able to target potential areas for restoration efforts.

References

Coalition for Buzzards Bay. 7 December 2006. www.savebuzzardsbay.org

Mystic River Watershed Association 20 February 2007 www.mysticriver.org

University of Rhode Island Watershed Watch. 7 December 2006 www.uri.edu/ce/wq/ww

Aerial photograph of Province-town Harbor showing evidence of physical disturbance of eelgrass beds. Each circular bare patch is a mooring chain scar where eelgrass around the mooring has been cleared by the mooring chain dragging along the bottom. Image courtesy of Marc Costa/PCCS/LightHawk
The following individuals have generously donated to the Cape Cod Bay Monitoring Program:

Jonathan Akasten
Wendy Alexander & Linda Rosenblatt
Wendy Andrews
Joe & Roanne Angiello
Dr. Gloria J. Ascher
Mr. & Mrs. Charles Ashby
Donald & Carol Barry
Christine P. Bartlett
Barbara A. Bassett
Fred J. Bauer
Doug Beckmann
Helen C. Belcher
Beth Bell
Donald T. Bennett
Edmund M. Webster
Jeffrey P. Benson
Peter H. Berasi
Terri Birkeland
Ned & Shirley Bider
Linda J. Bouley
Charles & Loretta Brahm
Maureen Brill
Mr. & Mrs. David Brooks
Jacqueline Bruskin
Rene G. Camplair
Cheryl Kimberley
Marie B. Castle-Good
Ansel B. Chaplin & Anne Kenney Chaplin
Russell & Nancy Chenoweth
Kimberly Bell Chester
Martha & Allan Clark
Alden Clayton
Barbara Coburn
Mark Conry
David B. Coombs
Robert & Sylvia Cotter
Suzanne Courcier & Robert W. Wilkins
Rachel Crystal & Frank Ehrenthal
Mr. & Mrs. William W. Cushing
Tom Cytron-Hysom
Bill & Esther Danielson
Caroline G. Darst
Linda Degutis
Ronald & Mary DeLorenzo
Regina M. Downey DVM
Vivian Dunn
Hal & Carolyn Eastman
Jon Eddowes
Drs. Nina & Richard Evans

Peter A. Fink
Rosanne Fox
Elizabeth Gaines
Dara N. Gall
Cecilia Garcia & Peter A. Schwartz
Ray & Dolores Gilbert
Laura Goldsmith
Michael J. Goydan
Carol Green
Constance Grey
Priscilla Griffith
Albert Gubar
Walter R. Harding
Keith W. & Marilyn M. Harrison
Pat Hartel
Mrs. Grace P. Hayes
Mrs. Nancy S. Haynes
Kathryn S. Head
Nadine Held
Mr. & Mrs. Harvey Hollander
Patricia D. Holt
The Rodricks Family
Dr. Martin I. Horowitz
Marcia Howley
Becki Hullinger & Ruth Watson
Judith & Martin Kaliski
James & Marie Karanfilian
John & Cari Keith
Jan B. G. Kelly
Betty R. Kreitinger
Jane J. Lea
Irene Lehan
Elizabeth & Milt Levy
Mildred C. Light
Jacques Longestrey
Mrs. Sherman Loud
Russell A. Lovell Jr.
Carol & Tom Mackey
Joan Madden
Mrs. Ronald L. Maher
Roger Maltby
Bill Adler
Paul McDowell
James & Theresa McGuire
Meg McGuire
John McKay
Richard E. McManus
Elleen McNelly
Michael & Sarah McNulty

Gabrielle Miller
Neal P. Miller
Karen Millman
Susan Mooney
Leslie Moreland & Craig Panaccone
Dr. Sue Morra & Shelley Kirkpatrick
Mitch & Ellie Morse
Stephanie Motts
Barbara Murphy
Laura Need
Edwin Nevis
Margaret M. Newport
Michael & Lori Nicholas
Mrs. Joan Nickerson
Cynthia J. Nowak
Marcia G. Ostrander
John M. Overill
Peter H. Pfund
Nathaniel & Melissa Philbrick
Damon R. Phillips
Lawrence Phillips
Russell Posthauer & Hope Meinhardt
Cathy Powers
Elizabeth Price
Donald C. Proctor
Candace Collins-Boden
Donald & Doris Quahres
Jennifer Queram
Karim H. Richards
Frederick C. Richardson
Alix Ritchie & Marty Davis
Kathleen Roberts
Jennifer Roche
Roddy Rodriguez
Julie Roehm
Carol & Stephen Roth
Ruth Gilbert & Milton Isserlis
Mary Scanlan
Elizabeth Schloss
Sandy Schmidt
Dianna E. Hess Schmitt
John Roderick
James & Mary Sexton
Wendy Shadwell
Daniel P. Sheehy
Monika Shepherd
Robert & Veronica Silva
Dr. Marianne Simmel
Stanley Simon
Nicholas A. Skinner
Sam Slicer
Bob & Lian Smith
Joseph F. Francis
Janet Smith
Emma-Marie Smedek
Ms. Philippa Stafford
Nancy M. Stevens
Marjorie K. Sturm
Susan D. Styer & Eugene Libearce
Robert Sutherland
Richard Swallow
Gail Teeple & Rita Burke
Wincie Terrat
Beverly R. Titus
Gregory Triandis & Sheila T. Murphy
Richard & Cindy Tyrseck
Amanda Tyson
Napi & Helen Van Der
e Jeanne C. Van Verre
Mrs. Phillip W. Vetterling
Alain Vulliet
Elizabeth Wainstock
Jean Walker
Dr. Audrey Walker
Francis Warren
Hilton S. Weiner
Edward & Esther Wenning
Joan & Ron Wideman
Elizabeth Wright
Marc & Sandra Zimmerman
Linda & Jerry Zindler

State of Cape Cod Bay Report
2007
10